Search results for "Cellular defense"

showing 2 items of 2 documents

Priming: getting ready for battle

2006

International audience; Infection of plants by necrotizing pathogens or colonization of plant roots with certain beneficial microbes causes the induction of a unique physiological state called “priming.” The primed state can also be induced by treatment of plants with various natural and synthetic compounds. Primed plants display either faster, stronger, or both activation of the various cellular defense responses that are induced following attack by either pathogens or insects or in response to abiotic stress. Although the phenomenon has been known for decades, most progress in our understanding of priming has been made over the past few years. Here, we summarize the current knowledge of p…

0106 biological sciencesInsectaPhysiology[SDV]Life Sciences [q-bio]beta-Aminobutyric acidPriming (agriculture)01 natural sciencesPlant Physiological Phenomenachemistry.chemical_compoundsalicylic acid.ethylenePlant biology (Botany)0303 health sciencesAminobutyratesJasmonic acidfood and beveragesGeneral MedicinePlantsLife sciencesmycorrhizal fungimycorhizeBiologieSignal Transductionacide jasmoniquesalicylic acidBiologyMicrobiology03 medical and health sciencesβ-aminobutyric acidMycorrhizal fungiAnimalsβ-aminobutyric acid;bacterial lipopolysaccharides;ethylene;jasmonic acid;mycorrhizal fungi;salicylic acid.Plant Physiological Phenomena030304 developmental biologyacide aminobutyriquePlant rootsAbiotic stressjasmonic acidfungiEthylenesCellular defenseImmunity Innateß-aminobutyric acidbacterial lipopolysaccharideschemistryéthylènefungiAgronomy and Crop Science010606 plant biology & botanyMolecular Plant-Microbe Interactions
researchProduct

Expression of yeast but not human apurinic/apyrimidinic endonuclease renders Chinese hamster cells more resistant to DNA damaging agents.

1997

Abasic sites represent ubiquitous DNA lesions that arise spontaneously or are induced by DNA-damaging agents. They block DNA replication and are considered to be cytotoxic and mutagenic. The key enzymes involved in the repair of abasic sites are apurinic/apyrimidinic (AP) endonucleases which process these lesions in an error-free mechanism. To analyze the role of AP endonuclease in the protection of mammalian cells against DNA damaging agents, we have transfected both the human (APE) and the yeast (APN1) AP endonuclease in Chinese hamster cells and compared the effects of expression of these genes in stable transfectants as to survival of cells and formation of chromosomal aberrations. Alth…

Saccharomyces cerevisiae ProteinsDNA RepairDNA repairCell SurvivalBlotting WesternCarbon-Oxygen LyasesChromosome DisordersCHO CellsToxicologyTransfectionAP endonucleaseDNA repair ; Apurinic endonuclease ; cellular defense mechanismschemistry.chemical_compoundCricetinaeGeneticsDNA-(Apurinic or Apyrimidinic Site) LyaseAnimalsHumansAP siteRNA MessengerFluorescent Antibody Technique IndirectMolecular BiologyCell NucleusChromosome AberrationsEndodeoxyribonucleasesbiologyCell DeathfungiNuclear ProteinsBase excision repairHydrogen PeroxideBlotting NorthernMethyl MethanesulfonateMolecular biologyDNA-(apurinic or apyrimidinic site) lyaseDNA Repair EnzymeschemistryGene Expression Regulationbiology.proteinChromosome breakageDNANucleotide excision repairDNA DamagePlasmidsMutation research
researchProduct